在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet的网络结构大放异彩。它吸收了NiN中网络串联网络的思想,并在此基础上做了很大改进。在随后的几年里,研究人员对GoogLeNet进行了数次改进,下面介绍这个模型系列的第一个版本。

Inception块

GoogLeNet中的基础卷积块叫作Inception块。

Inception块结构
Inception块结构

如图所示,Inception块里有4条并行的线路。

  • 前3条线路使用窗口大小分别是1×1、3×3 和 5×5 的卷积层来抽取不同空间尺寸下的信息
  • 其中中间2个线路会对输入先做1×1卷积来减少输入通道数,以降低模型复杂度。
  • 第四条线路则使用3×3最大池化层,后接1×1卷积层来改变通道数。
  • 4条线路都使用了合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维上连结,并输入接下来的层中去。
  • Inception块中可以自定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。
import time
import torch
from torch import nn, optim
import torch.nn.functional as F

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class Inception(nn.Module):
    # c1 - c4为每条线路里的层的输出通道数
    def __init__(self, in_c, c1, c2, c3, c4):
        super(Inception, self).__init__()
        # 线路1,单1 x 1卷积层
        self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)
        # 线路2,1 x 1卷积层后接3 x 3卷积层
        self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1 x 1卷积层后接5 x 5卷积层
        self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3 x 3最大池化层后接1 x 1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        return torch.cat((p1, p2, p3, p4), dim=1)  # 在通道维(第1维,第0维是batch_size)上连结输出

GoogLeNet

GoogLeNet结构
GoogLeNet结构

GoogLeNet跟VGG一样,在主体卷积部分中使用5个模块(block),每个模块之间使用步幅为2的$3\times 3$最大池化层来减小输出高宽。第一模块使用一个64通道的$7\times 7$卷积层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第二模块使用2个卷积层:首先是64通道的$1\times 1$卷积层,然后是将通道增大3倍的$3\times 3$卷积层。

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为$64+128+32+32=256$,其中4条线路的输出通道数比例为$64:128:32:32=2:4:1:1$。其中第二、第三条线路先分别将输入通道数减小至$96/192=1/2$和$16/192=1/12$后,再接上第二层卷积层。第二个Inception块输出通道数增至$128+192+96+64=480$,每条线路的输出通道数之比为$128:192:96:64 = 4:6:3:2$。其中第二、第三条线路先分别将输入通道数减小至$128/256=1/2$和$32/256=1/8$。

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第四模块更加复杂。它串联了5个Inception块,其输出通道数分别是$192+208+48+64=512$、$160+224+64+64=512$、$128+256+64+64=512$、$112+288+64+64=528$和$256+320+128+128=832$。这些线路的通道数分配和第三模块中的类似,首先含$3\times 3$卷积层的第二条线路输出最多通道,其次是仅含$1\times 1$卷积层的第一条线路,之后是含$5\times 5$卷积层的第三条线路和含$3\times 3$最大池化层的第四条线路。其中第二、第三条线路都会先按比例减小通道数。这些比例在各个Inception块中都略有不同。

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第五模块有输出通道数为$256+320+128+128=832$和$384+384+128+128=1024$的两个Inception块。其中每条线路的通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均池化层来将每个通道的高和宽变成1。最后我们将输出变成二维数组后接上一个输出个数为标签类别数的全连接层。

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   d2l.GlobalAvgPool2d())

net = nn.Sequential(b1, b2, b3, b4, b5, 
                    d2l.FlattenLayer(), nn.Linear(1024, 10))

我们生成一个96×96的数据演示各个模块之间的输出的形状变化:

net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))
X = torch.rand(1, 1, 96, 96)
for blk in net.children(): 
    X = blk(X)
    print('output shape: ', X.shape)

输出:

output shape:  torch.Size([1, 64, 24, 24])
output shape:  torch.Size([1, 192, 12, 12])
output shape:  torch.Size([1, 480, 6, 6])
output shape:  torch.Size([1, 832, 3, 3])
output shape:  torch.Size([1, 1024, 1, 1])
output shape:  torch.Size([1, 1024])
output shape:  torch.Size([1, 10])